Regression analysis is a statistical method used to model the relationship between a dependent variable and one or more independent variables. In Python, regression analysis can be performed using various libraries such as scikit-learn, statsmodels, and numpy.
Here are the steps to perform regression analysis in Python using scikit-learn library:
Step 1: Import Libraries Import the required libraries, including numpy, pandas, and scikit-learn.
pythonimport numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
Step 2: Load the Data Load the dataset into a pandas dataframe.
pythondata = pd.read_csv('data.csv')
Step 3: Prepare the Data Separate the dependent variable and independent variable from the dataset.
pythonx = data['independent_variable'].values.reshape(-1,1)
y = data['dependent_variable'].values.reshape(-1,1)
Step 4: Create the Regression Model Create a LinearRegression model from scikit-learn.
pythonregression_model = LinearRegression()
Step 5: Fit the Model Fit the model using the dataset.
pythonregression_model.fit(x,y)
Step 6: Make Predictions Use the trained model to make predictions.
pythony_predicted = regression_model.predict(x)
Step 7: Visualize the Results Visualize the results using matplotlib.
pythonimport matplotlib.pyplot as plt
plt.scatter(x, y)
plt.plot(x, y_predicted, color='red')
plt.show()
In summary, performing regression analysis in Python using scikit-learn involves importing the required libraries, loading and preparing the data, creating a regression model, fitting the model, making predictions, and visualizing the results.